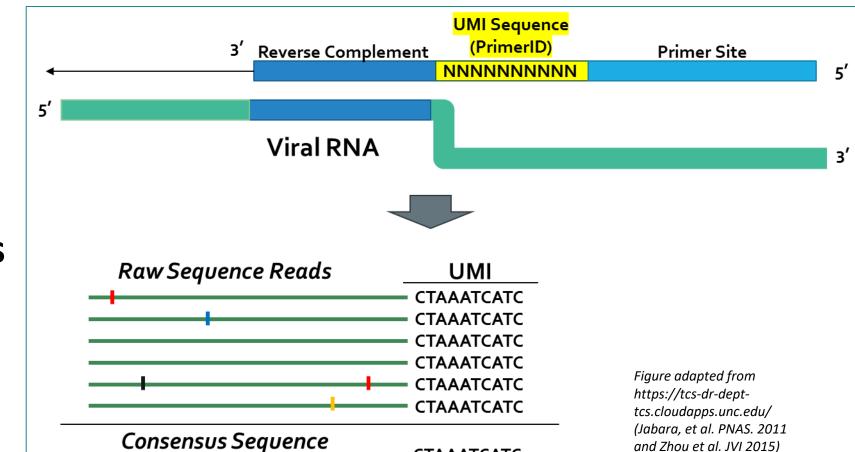
Comparison of HIV Drug-Resistant Mutant Detection by NGS with and without Unique Molecular Identifiers (UMI)

<u>Kevin D McCormick</u>; Kerri J Penrose; Rahil Sethi; Jacob Waldman; William Schwarzmann; Uma Chandran; John W Mellors and Urvi M Parikh

University of Pittsburgh - School of Medicine - Department of Infectious Disease


Introduction

Background

Sequencing error compromises the sensitivity of NGS for detection of HIV drug-resistant mutants.

Consensus building with UMIs can reduce sequencing artifacts and quantify the true sampling depth^{1,2}.

UMI-based consensus building has not been universally adopted for drug-resistant surveillance because it adds

Objectives

Perform a comparative assessment of UMI- and non-UMIbased NGS assays for the accurate detection and confident analysis of low frequency HIV DR.

1)Determine the sensitivity and specificity

2)Determine the limit of detection

technical and bioinformatics challenges with uncertain gain.

СТАААТСАТС

Figure 1: Consensus building from sequences derived from individual viral templates that are tagged with UMIs (N^{10} = 1 Million Combinations) during cDNA synthesis can be been used to remove PCR and sequencing artifacts and to quantify the depth of mutant and wild-type template sampling¹⁻³.

3)Determine the accuracy with clinical samples

Materials & Methods

Mixture Panel

We created a mixture panel of recombinant wild-type and mutant viruses that were spiked into HIV-negative blood.

Figure 2: Patient-derived HIV-1 Subtype C RT was cloned into xxLAI and the HIV DR mutations K65R, K103N, Y181C and M184V were made by mutagenesis. Infectious clones of WT and MT plasmids were produced in 293T cells. Finally, mixtures of WT:MT virus were diluted in HIV negative blood.

We serial-diluted this plasma into cell culture media to determine the detection limits of each NGS assay.

To assess the effects of PCR bias, we performed UMI-NGS with PCR primers that contained mismatches for cDNA templates.

NGS Library Prep and Analysis

- NGS libraries were constructed using the ultrasensitive single-genome sequencing method as previously described3.
- The Zhou method was used for UMI consensus building and UMI bioinformatic analysis⁴.
- PASeq v1.4 was used for non-UMI NGS analysis (https://www.paseq.org⁵)

Clinical Data Set

A UMI-NGS dataset derived from plasma samples from viremic donors with HIV acute infection was re-analyzed without consensus building.

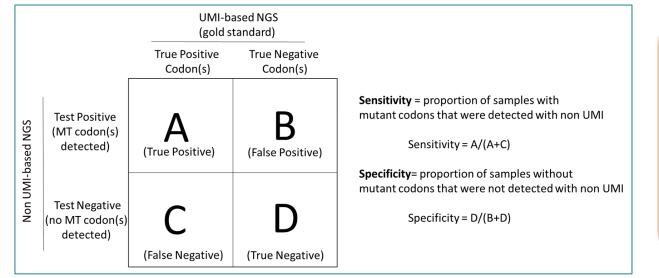


Figure 3: MiSeq libraries were prepared from the HIV-1 RT region (R1 codons 80-147; R2 codons 151-212) of virions isolated from 62 viremic donors with HIV acute infection. Sensitivity and Specificity for non-UMI analysis were calculated by the number of discordant samples relative to UMI-based NGS analysis.

To determine assay reproducibility, the final library preps were re-sequenced by running the final pooled samples in a fresh MiSeq flow cell.

Mixture Panel

Table 1: Comparison of individual HIV-1 RT allele frequencies from known mixtures of WT and Mutant recombinant virus by UMI-based NGS and non-UMI-based NGS

Allele Frequency Expected (%)	non-UMI-based NGS Allele frequency detected (%)				UMI-based NGS Allele frequency detected (%)			
	K65R	K103N	Y181C	M184V	K65R	K103N	Y181C	M184V
100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
20.0	28.0	28.0	27.0	27.0	20.3	20.3	20.3	20.3
10.0	14.6	14.6	14.6	14.6	8.3	8.3	8.3	8.3
5.0	7.5	7.6	7.8	7.8	3.7	3.7	3.7	3.7
2.5	3.4	3.4	3.5	3.5	1.6	1.6	1.6	1.6
1.0	1.3	1.3	1.5	1.5	0.5	0.5	0.5	0.5
0.5	0.7	0.6	0.6	0.6	0.3	0.3	0.3	0.3
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table 2: Comparison of background mutation rates in mixtures of WT and Mutant recombinant virus by UMI-based NGS and non-UMI-based NGS

Spurious Mutation Rates	non-UMI-based NGS (n=8)	UMI-based NGS (n=17)	
Ave Number	482	68	
Mean	0.06%	0.08%	
Median	0.02%	0.05%	
Min	0.01%	0.01%	
Max	0.46%	0.46%	

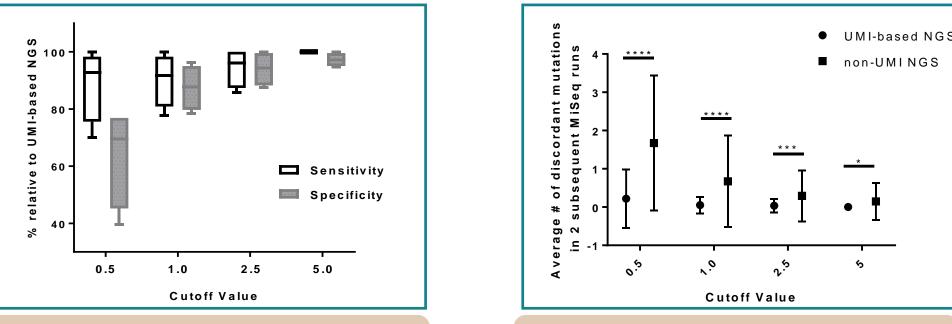
Table 3: Comparison of the limit of detection for 1% and 5% HIV-1 RT allele frequencies in recombinant virus serial diluted by UMI-based NGS and non-UMI-based NGS

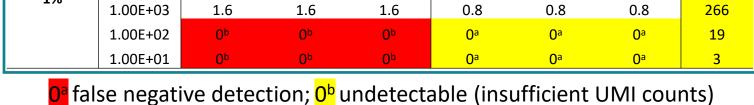
F	Viral Load	non-UMI-	based NGS %	6 Detected	UMI-ba	sed NGS % D	Detected	# 118.41	
Expected	(cp/ml)	K103N	Y181C	M184V	K103N	Y181C	M184V	# UMI	
	1.00E+06	3.8	3.8	3.8	0.6	1.5	1.5	4308	
	1.00E+05	4.0	4.0	4.0	1.3	3.2	3.2	24991	
===(1.00E+04	3.9	4.0	4.0	4.0	4.7	4.7	2149	
5%	1.00E+03	4.8	4.8	4.8	3.1	3.1	3.1	261	
	1.00E+02	0.8	0.9	0.9	O ^a	0ª	0 ^a	16	
	1.00E+01	0 ^b	0 ^b	0 ^b	0 ^a	0 ^a	0 ^a	0	
	1.00E+06	0.9	0.9	0.9	0 ^b	O ^b	0 ^b	5010	
	1.00E+05	0.9	0.8	0.8	O ^b	0.7	0.7	20848	
10/	1.00E+04	0.8	0.8	0.8	0.6	0.7	0.7	2325	
1%					1				

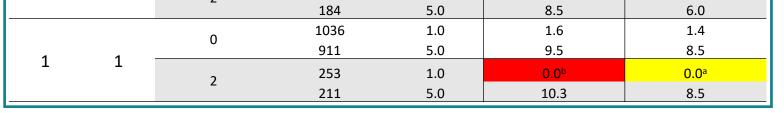
Summary

- We detected 0.5% drug-resistant associated mutations with and without UMI-based sequence consensus building, indicating that both methods are generally robust.
- False negative error rates are higher in non-UMI-based NGS in samples with limited template sampling.
- Non-UMI NGS had unreproducible background mutations (<5%) in clinical samples, which lowered the specificity relative to the UMI assay.

Table 4: Comparison of the effects from PCR primers that contained mismatches for the target cDNA templates with UMI- and non-UMI-based NGS (PCR Bias)


# of Reactions		# of PCR1 mismatches	Primers with consensus	Allele Frequency	non-UMI-based NGS Allele frequency	UMI-based NGS Allele frequency	
PCR 1	PCR 2			Expected (%)	detected (%)	detected (%)	
		0	1447	1.0	1.5	0.9	
5	5		1213	5.0	7.0	4.0	
5	5	2	248	1.0	0.0 ^b	0.8ª	
			215	5.0	7.7	10.7	
		0	1244	1.0	1.7	1.5	
г	1	0	1170	5.0	7.6	6.5	
5	1	2	120	1.0	1.9	3.3 ª	
		L	178	5.0	8.3	11.2	
3 3		0	1168	1.0	1.5	0.9	
	C	0	1025	5.0	7.5	4.6	
	3	2	246	1.0	1.2	1.2 ª	
			183	5.0	11.4	8.2	
3 1		0	1092	1.0	1.7	1.5	
	1	0	989	5.0	8.0	7.3	
		2	200	1.0	0.0 ^b	1.0ª	
	4						


Clinical Data Set


Table 5: Comparison of HIV-1 RT allele frequency detection in clinical samples by UMIbased NGS and non-UMI-based NGS

	non-UMI-based NGS MiSeq Run 1	non-UMI-based NGS MiSeq Run 2	UMI-based NGS MiSeq Run 1	UMI-based NGS MiSeq Run 2
1	10.3% R83S, 0.5% E122K, 2.7% H198Q, 0.7% D192N, 0.51% E194K, 0.73% D204K,	0.53% E122K, 0.57% D192N, 0.71% D204K,	0.6% D192N, 0.5% E204K	0.6% D192N, 0.5% E204K
2	96.3 Q174\$/2.4% Q174N/1.4% Q174R	96.8%Q174\$3.2% Q174N, 0.5% G196E	98.5 Q174\$/1.5% Q174N	98.5 Q174S/1.5% Q174N
	65.8% W88C, 12.7% K102R, 1.22% K104R, 1.1% V118I, 75.5% V118M, 66.8% S123N,	67.1% W88C, 11.9% K102R, 1.1% K104R, 76.2% V118M, 58.5% S123N, 30.5% S123D	65.7% W88C, 12.6% K102R, 1.2% K104R, 75.4% V118M, 65.6% S123N, 32% S123D,	65.3% W88C, 12.8% K102R, 1.3% K104R, 75.8% V118M, 2.1% D123E/65.3% S123N,
	31.4% S123D 11.2% S123G, 10.0% S162C, 11.0% S162A, 22.4% S162F, 66.8% T165I	10.4% S123G, 10.1% S162C, 11.5% S162A, 23.1% S162F, 65.8% T165I 10.3% A173T,	10.1% S162C/23.6% S162F/2.7% S162A, 65.8% T165I, 10.2% A173T, 23.8% E177D, 76.0% I202V, 0.8% R206K.	32% S123D, 10.1% S162C/23.6% S162F/2.7% S162A, 65.8% T165I, 10.2% A173T, 23.8% E177D, 76.0% I202V, 0.8% R206K,
3	10% A173T, 22.0% E177D, 0.6% G196E, 76.0% 1202V, 0.6% E203K, 1.0% R206K 1.5% K101N, 0.58% V118I, 0.8% R143K, 0.5% A173T, 0.53 I178V, 1.0% V179I,	22.9% E177D, 0.5% G196E , 76.0% I202V, 0.6% E203K , 0.9% R206K 0.6% K101N , 0.8% R143K, 1% I178M , 2.3% I178V , 0.8% V179I, 1.7% V189I, 0.6%	76.0% I202 V, 0.8% R206K,	23.8% E177D, 76.0% I202 V, 0.8% K206K,
4	1.9%V189I, 0.6% E194K, 0.58% D204K,	E194K,	0.5% R143K, 0.5% V179I, 1.9% V189I, 0.6% E194K	0.5% R143K, 0.5% V179I, 1.9% V189I, 0.6% E194K
5	4.1% Q91H, 1.34% K101N, 0.52% T165I, 0.58% E194K, 0.5% Q207A, 0.6% E122K, 1.27% E169K, 0.6% A173T, 0.6% F203K	0.6% K101N, 0.65% E194K, 0.7% E122K, 1.06% E169K, 0.5% E203K	0.5% E194K 0.9% E169K	0.5% E194K 0.9% E169K
-	31.8% A173T, 6.09% E177D, 6.15% I178L, 0.6% G190E, 0.9% D192N, 1.55% E194K,	31.9% A173T, 6.3% E177D, 6.2% I178L, 0.5% D186N, 0.5% G190E, 0.9% D192N,	20% A173T, 2.5% E177D, 2.5% I178L, 0.7% D192N, 1.2% E194K, 0.9% E203K, 1.1%	20% A173T, 2.5% E177D, 2.5% I178L, 0.7% D192N, 1.2% E194K, 0.9% E203K, 1.1%
7	1.05% E203K, 1.4% D204K, 0.6% Q207K 0.7% Q207E, 0.8% D204K, 1.6% K211R	1.6% E194K, 0.9% E203K, 1.5% D204K, 0.5% Q207K 1.5% K211R	E204K 1.5% K211R	E204K 1.5% K211R
9	-	1.370 K211K	-	-
10	47.5 K102R, 0.5% Q 207E, 54.9% K211Q	52.0% K102R, 54.2% K211Q	52.7% K102R, 55.4% K211Q	52.7% K102R, 54.2% K211Q
11 12	8.7% F87L 3.4% K103I	23.8% F87L, 1.7% D123S, 1.9% R166K, 1.0% D204E 1.6% K174K, 0.6% I202I,	8.7% F87L, 0.6% E122K	8.7% F87L, 0.6% E122K
13	-	-	-	-
14 15	•	-	- -	-
	47.8% I178L, 47.9% V179I/50.4% V179T, 49.7% Q197P, 51.5% E207D/16.3% E207G,	48.5% I178L, 0.7% V179A, 48.7% V179I/50.4% V179T, 51% Q197P, 50.4%	43.4% I178L, 43.6% V179I/55.7% V179T, 54.4% Q197P, 56.4% E207D/8.4% E207G,	43.4% I178L, 43.6% V179I/55.7% V179T, 54.4% Q197P, 56.4% E207D/8.4% E207G,
16	31.92 K211R	E207D/16.3% E207G, 31.2 K211R 0.7 R83K, 0.6% E122K, 6.6% S134N, 0.7% E169K, 2.2% A173K, 2.3% K174Q, 0.5%	34.9% K211R	34.9% K211R
17		D192N, 0.8% E194K, 0.6% A200V, 0.6% D204K,	4.0% \$134N	3.6% \$134N
10		0.5% V90I, 0.6% V118I, 1.0% S123D, 0.6% S162N, 0.6% A173T, 0.5% E194K, 0.7%		0. (0) 700 47
18 19	0.6% V118I, 1.0% S123D, 0.5% S162N, 0.9% D204K 0.5% A173D, 0.5% A173T, 4.0% A200T	D204K 0.5% A173Q, 4.0% A200T	- 3.3% A200T,	0.6% E204K 3.8% A200T,
	2.83% K104I, 0.9% G112E, 0.6% D113N, 0.9% V189I, 1.0% E194K, 1.1% A200K, 0.6%	1% K101K, 0.9% G112E, 0.5% I178I, 0.9% V189I, 1.0% E194K, 1.2% A200K, 0.6%		
20 21	R206K 0.8% A114T, 0.7% E138K, 0.5% E194K,	R206K 0.5% K104N, 0.7% E138K, 0.6% E169K, 0.6% E194K,	0.9% A200K, 0.6% E194K	0.7% V189I, 0.9% A200K, 0.6% E194K
22	0.6% S162N, 0.6% A200V	0.7% E169K		-
23 24	6.9% K102R 1.3% E122K, 33.9% I178V, 0.9% D192N, 0.8% E194K, 0.7% R206K	6.6% K102R, 1.2% E122K, 35% I178V, 1.0% D192N, 0.8% E194K, 0.7% R206K	2.1% K102R 0.6% E122K, 33.8% I178V, 0.6% D192N, 0.7% E194K, 0.5% R206K	1.9% K102R 0.6% E122K, 33.8% I178V, 0.6% D192N, 0.7% E194K, 0.5% R206K
25	2.2% P176L, 3.9% Q207K	2.4% P176L, 0.9% Q 207K,	2.2% P176L	2.2% P176L
26		0.6% I178I		-
27 28	0.5% A173T, 1.0% Q207E	0.6% F160L, 2.9% Q207E	-	• •
	0.5 R143K, 0.5% E169K, 0.7% D192N, 0.9% D194K,0.7% E196K, 0.6% E203K, 1.5%	0.5 R143K, 0.6% E169K, 0.9% D192N, 0.9% D194K, 0.9% E203K, 1.1% D204K, 1.5%		
29 30	E206K	E206K	0.5% D194N, 0.7% E196K, 0.8% E206K, 1.3% R208K	0.5% D192N, 0.5% D194K, 0.8% E204K, 0.8% E206K,
31	2.16% L193I, 0.57% Q207E, 1.51% K211R	0.65% L193I		-
32 33	5.7% E207D 0.8% R199K, 1.3% A200R, 0.9% E204K	0.6%1178I, 5.7% E207D 0.8% F160L, 0.7% R199K, 4.1% A200R, 0.9% E204K	5.2% E207D 0.6% E122K, 0.7% E204K	5.2% E207D 0.8% R199K, 0.7% E204K
33	0.6% E89K , 0.7% E122K, 0.5% G141E , 25% T165I, 0.81% A173E, 0.64% G190E ,	0.8 /0 F100L, 0.7 /0 K195K, 4.1 /0 A200K, 0.5% E204K	0.0 % E122K, 0.1% E204K	0.0% K177K, 0.7% E204K
34	0.51% A200T, 0.6% D204K,	0.6% E89K, 0.7% E122K, 25% T165I, 0.81% A173E, 0.64% G190E, 0.6% D204K,	0.7% E122K, 25% T165I, 0.81% A173E, 0.6% D204K,	0.7% E122K, 25% T165I, 0.7% A173E, 0.6% D204K,
35 36	0.8% A200K, 0.5% E203K 0.5% S162T	0.5% T139M, 0.9% A200K, 0.5% D204K	0.7% A200K	0.7% A200K
37	0.9% G93E, 0.5% I167F, 0.6% I178R,	1.0% G93E, 0.7% I167F, 0.7% I178R,	0.9% I167F, 0.9% I178R	0.9% I167F, 0.9% I178R,
38	0.7% A173T, 2.7% R206K 0.8% G93E, 0.5% H96Y, 0.8% K104N, 0.6% I178T, 0.8% D186N, 0.9% E177K, 1.6%	0.6% S162S, 0.7% A173T, 2.7% R206K	2.1% R206K	2.1% R206K
39	1202V	0.8% G93E 0.7% K104N, 1.1% E177K, 0.6% I178T, 0.9% D186N, 1.6% I202V	0.9% I202V	0.9% I202V
40 41	6.9% N175C, 55.2% N175Y, 37.3% N175H , 55.3% I187L	6.8% N175C, 55.2% N175Y, 37.3% N175H , 55.6% I187L 0.6% E194K	4.1% N175C, 59.8% N175Y, 34% N175H , 58.8% I187L	5.2% N175C, 58.3% N175Y, 34.2% N175H , 57.2% I187L
	85% 1142V, 1.7% A173T, <u>9.9% A173G</u>, <u>11% A173K</u>, 76%A173E, 0.8% K174T, 4.4			
42 43	K174R, 14% V90L, 3.1% Q91H, 1.5% P176S	85% 1142V, 0.8% K174T, 3.9 K174R, 4% V90L, 5.8% Q91H, 1.5% P1768	83.6% I142V	83.8% I142V
43	-	1.0% E177E	-	
45				
46	81% G123S, 2.7% I132V, 1% A173I, 73.1% Q174K, 0.5% A200K , 22.3% A200E, 18.8% A200S	81% G123S, 2.7% I132V, 0.9% A173I, 72.4% Q174K, 22.3% A200E, 18.8% A200S	84% G123S, 2% I132V, 1% A173I, 72.8% Q174K, 22.6% A200E, 16.1% A200S	84% G123S, 2% I132V, 0.6% A173I, 73.4% Q174K, 21.6% A200E, 16.9% A200S
47	12% A173T, 87% Q174R, 2.5% I178V, 85% K211R	12% A173T, 88% Q174R, 0.7% I178V, 85% K211R	65% A173T, 34% Q174R, 34.5% K211R	64% A173T, 34% Q 174R, 34.5% K211R
	1% R83K, 0.6% D86N, 0.9% E89K, 1.4% G93E, 1.1% D110N, 0.6% V111M, 0.7 D113N,	1.2% R83K. 0.6% D86N. 1.06% E89K. 1.4% G93E. 1.1% D110N. 0.7% V111M. 0.5		
	0.7% R125K, 1.3% D121N, 2.0% E122K, 0.7% R143K, 0.5 M164I, 1.5% E169K, 0.5%	D113N, 0.7% R125K, 1.3% D121N, 2.4% E122K, 0.7% R143K, 1.2% S162S, 0.5		
	R172K, 0.6% P176S, 0.8% V179G, 1.0% V179I, 1.2% D185N, 0.9% D186N, 0.5% G190E, 3.1% D192N, 2.5% E194K, 0.7% G196R, 1.0% I202V, 1.8% E203K, 1.6%	M164I, 1.6% E169K, 0.7% R172K, 1%K174K, 0.6% P176S, 0.6% E177K, 1.3% I178I, 0.8% V179G, 1.1% V179L 1.2% D185N, 1.0% D186N, 3.1% D192N, 2.7% E194K, 0.7%	0.7% R83K, 0.9% G93E, 0.6% D121N, 1.2%E122K, 1% V179G, 0.5% D186N, 1.6%	0.7% R83K 0.9% 093E 0.7% D121N 1.3%E122K 0.5% R125K 0.5% E169K 1%
48	E204K, 0.8% R206K	G196R, 0.9% I202V, 1.9% E203K, 1.6% E204K, 0.8% R206K, 0.8% Q207D	D192N, 1.4% E194K, 1% E203K, 0.7% E204K	V179G, 0.5% D186N, 1.8% D192N, 1.5% E194K, 0.9% E203K, 0.7% E204K
49	15% G123N, 85% G123D, 35% Q174R, 65% I178M, 68% E207N, 31% E207D, 35% K211R	16% G123N, 85% G123D, 35% Q174R, 65% I178M, 68% E207N, 31% E207D, 0.8%	15% G123N, 85% G123D, 35% Q174R, 65% I178M, 70% E207N, 30% E207D, 34%	15% GI23N, 85% GI23D, 35% Q174R, 65% I178M, 70% E207N, 30% E207D, 34%
49	1.4% G123N, 0.54 G123D 1.1% Q174K, 2.5% G196E, 1% I202V, 0.9% E204N, 1.1%	E207K, 35% K211R 1.1% G123N, 1.1% Q174K, 1.2% P176P, 3.1% G196E, 1% I202V, 0.9% E204N, 1.1%	K211R	K211R 1.1% G123N, 1.1% Q174K, 2.5% G196E, 1% I202V, 1.1% E204N, 1.1% E207D, 1.1%
50	E207D, 1.2 L210I	E207D, 1.3% K211K	1.1% G123N, 1.1% Q174K, 2.5% G196E, 1% 1202V, 1.1% E204N, 1.1% E207D,	R211K
51	1.0% E122K, 20% G123N, 20% T142I, 20% 165T, 20% L178I, 0.5% P176L , 0.7% G196E, 19% I202V, 2.6% D204K, 17% D204N, 20% Q207D,	1.0% E122K, 19.2% G123N, 20% T142I, 18.7% 165T, 18.8% L178I, 0.7% G196E, 19% I202V, 1.8% D204K, 17% D204N, 18.2% Q207D,	1% E122K, 15% G123N, 15% T142I, 15% I165T 15% L178I, 15% I202V, 0.7% D204K 15% D204N, 15% Q207D,	1% E122K, 15% G123N, 15% T142I, 15% 1165T 15% L178I, 15% 1202V, 0.7% D204K 15% D204N, 15% Q207D,
	13% K102Q, 5% G123N, 95% G123S, 95% I135V, 0.5% I142V, 95% S162C, 5% Q174K,	13% K102Q, 6% G123N, 95% G123S, 95% I135V, 0.6% I142V, 95% S162C, 5% Q174K,		
52	81% I178M, 0.6% A200V, 0.6% K201R, 5% I202V, 5% D204N, 0.7% D204K, 5% E207D	81% 1178M, 0.6% V189I, 0.6% A200V, 0.7% K201R, 5% 1202V, 5% D204N, 0.7% D204K, 5% E207D	13% K102Q, 5% G123N, 95% G123S, 95% I135V, 5% I142V, 95% S162C, 5% Q174K, 81% I178M, 5% I202V, 5% D204N, 5% E207D	13% K102Q, 5% G123N, 95% G123S, 95% 1135V, 5% I142V, 95% S162C, 5% Q174K, 81% I178M, 5% I202V, 5% D204N, 5% E207D
53	0.6% D192N, 0.7% A173T <u>, 9.4% D204K</u>	0.5% D192N, 0.8% A173, 0.5% E194K, 0.7% I202I, 5.7% D204K, 3.54% Q207E	•	
54	1.1% K174K, 0.6% I178I, 0.9% L193I, 2% H208Y 0.6% R83K, 0.5% D121N, 0.6% R143K, 0.8% A173I, 5.3% D192N, 0.9% E194K, 0.6%	0.7%K166K 0.6% K174K, 0.6% 1178I, 0.9% L193I, 1.8% H208Y	1.5% H208Y	1.5% H208Y
55	E203K , 3% L205I , 0.6% Q207K ,	0.8% E194K, 0.9% L205L, 0.7% Q207K,	3.8% II18V, 0.5% A173I, 4.3% D192N, 0.6% E194K	4.7% D192N, 0.6% E194K
56	47% Q174K, 3% L193L , 1% D204K	47% Q174K, 3% L193L, 0.5% E194K, 1% D204K	44% Q174k, 0.8% D204K	45% Q174k, 0.8% D204K
57 58	0.6% A173T 3.6% Q91H, 2.1% A200R	0.6% A173T 6.1% Q91H, 0.5% Q207K	-	• •
	1.1% N81T, <u>9.4% Q85H</u> , 0.9%R83K, 1.1% H96Y, 0.9% S134N, 0.6% F171L, 1.4%	1% N81T, 0.7% R83K, 2.6% O85H, 1.0% H96Y, 0.9% S134N, 1.4% A173T, 1.1%		
59 60	A173T, 1.1% I178L, 0.6% 1195R 2% Q91H, 0.6% R125K, 33% G196E	1178L, 2.0% Q207D, 0.5% L210W, 3% K211R 4% Q91H, 0.8% R125K, 33% G196E, 4%Q207D, 5%K211R	0.9% N81T, 0.9%R83K, 0.9% H96Y, 0.9% S134N, 0.9% A173T, 0.9% I178L, 0.6% E194K, 19.2% G196E	0.9% N81T, 0.9%R83K, 0.9% H96Y, 0.9% S134N, 0.9% A173T, 0.9% I178L 0.6% E194K, 19.5% G196E
	0.9% K211R	0.8% L193I , 0.9% K211R	0.7% K211R	0.7% K211R
61 62	2.0% G99R, 0.6% S123D, 4.6% P140Q	1.7% G99R, 0.5% S123D, 4.7% P140Q	3.7% G99R, 3.7% P140Q	3.7% G99R, 3.7% P140Q

Bold = Discordant mutations between UMI and non-UMI-based analysis; Red = Discordant mutations of each analysis in 2 subsequent MiSeq runs

O^a false negative detection; O^b undetectable (insufficient UMI counts)

Figure 4: Sensitivity and Specificity from non-UMI-based NGS reanalysis of a clinical dataset. Figure 5: Reproducibility of UMI- and non-UMIbased NGS in 2 subsequent MiSeq runs.

Conclusions

- UMI-based NGS should be used when calling mutations at frequencies below 5%
- This is predominantly true for samples that are likely to have limited sampling depth from low viral inputs (e.g. from DBS) or with diverse samples (polymorphic primer binding sites).

References

Keys, J. R. et al. AIDS Res. Hum. Retroviruses 31, 658–68 (2015).
Jabara, C. B., et al. Proc. Natl. Acad. Sci. 108, 20166–20171 (2011).
Boltz, V. F. et al. Retrovirology 13, 87 (2016).
Zhou, S et al. J. Virol. 89, 8540–8555 (2015).
Noguera-Julian, M. et al. J. Infect. Dis. 17, 19752 (2017).

This poster was made possible by the generous support of the American people through the United States Agency for International Development (USAID) and the U.S. President's Emergency Plan for AIDS Relief (PEPFAR). The contents are the responsibility of the authors and do not necessarily reflect the views of USAID, PEPFAR or the U.S. Government.

We would like to acknowledge the Microbicide Trials Network for the use of the UMI-NGS dataset that was derived from plasma samples from viremic donors with HIV acute infection.

