BACKGROUND/OBJECTIVE

- Etravirine (ETR) is a second-generation NNRTI that is used as a component of combination antiretroviral therapy (ART) for treatment-experienced persons.
- The extent of cross-resistance between nevirapine (NVP) and efavirenz (EFV) and ETR is not well defined especially in low- and middle-income countries (LMIC) where switches from first-line ART may be delayed.
- To address this gap, the susceptibility to ETR in individuals infected with HIV-1 subtype C experiencing virologic failure while on a first-line NNRTI-containing regimen was investigated.

METHODS

Sample Acquisition
- Residual plasma from samples sent for routine HIV drug resistance testing at LanCt Laboratories, South Africa
- Targeted criteria:
 - Subtype C infection
 - Failing first-line therapy after >6 months of ART
 - Viral load of >10,000 RNA copies/ml
 - Contains ≥ 1 NNRTI mutation in reverse transcriptase (Stanford HIVdb)
- Included N=12 ART-naive controls for calculating composite IC50 for Fold Change (FC) values

Sample Size and Description

<table>
<thead>
<tr>
<th>Subtype C Samples</th>
<th>135 Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraction Failures</td>
<td>6/135 (4.4%)</td>
</tr>
<tr>
<td>PCR Failures</td>
<td>14/135 (10.4%)</td>
</tr>
<tr>
<td>Cloning Failures</td>
<td>3/135 (2.2%)</td>
</tr>
<tr>
<td>HIV-1 RNA levels Median 20-73 (log) Range 4.01-16.20 (log) (n=135)</td>
<td></td>
</tr>
</tbody>
</table>

Cloning and Phenotyping
- Extract HIV-1 RNA from donor American
- Generate cDNA & PCR amplify RT full-length sequence (ca 1-568)
- Clone donor full-length HIV-3 RT into viral vector
- Transfer cells with donor-derived viral vector and prepare viral stocks
- Determine viral susceptibility to ETR using TZM-bl cells

Genotype Scoring
- HIVdb vs. ETR weight factors for ETR RNA

Figure 1: (A) Phenotype and (B) genotype cross-resistance to etravirine of plasma-derived HIV-1 subtype C viruses from 100 individuals on four first-line RTKs.

RESULTS

Table 1. The NNRTI mutations L100I, Y181C, M230L and the K65R mutation K65R are associated with ETR Cross-Resistance Phenotype Score.

Table 2. K65R is associated with high ETR phenotypic resistance in (A) HIV-1 subtype C samples and (B) HIV-1 subtype B ETR phenotyping data accessed through the Stanford HIVdb.

Table 3. There was no change in ETR susceptibility in recombinant HIV-1 virus clones containing 65K vs. K65R (site-directed mutation).

Figure 4. The correlation between K65R and ETR phenotypic resistance is related to the total number of NNRTI-resistance associated mutations.

Summary

- The K65R mutation was associated with ETR resistance but reversion to 65K in two samples had no effect on ETR susceptibility, suggesting it may be a marker of resistance rather than a direct cause of resistance.

Conclusions

- Phenotypic cross-resistance to ETR is common in first-line NNRTI-containing ART failure in HIV-1 subtype C from South Africa.
- Genotype-based algorithms differentially classify ETR susceptibility in HIV-1 subtype C.
- Updated weightings of combinations of ETR-associated mutations may be needed to improve genotype prediction of ETR phenotype in HIV subtype C.

REFERENCES

This poster was supported by a grant from the NNRTI and NNRTI-Host Factors Foundation (awarded 12P032103202) and is also made possible by the support of the American people through the United States Agency for International Development (USAID) and the U.S. President’s Emergency Plan for AIDS Relief (PEPFAR). The contents are the responsibility of the co-authors and do not necessarily reflect the views of USAID, PEPFAR or the United States Government. Cooperation Agreement 605A-USA 12-00561-3